A note on Riemann-Liouville fractional Sobolev spaces

نویسندگان

چکیده

Taking inspiration from a recent paper by Bergounioux et al., we study the Riemann-Liouville fractional Sobolev space \begin{document}$ W^{s, p}_{RL, a+}(I) $\end{document}, for id="M2">\begin{document}$ I = (a, b) $\end{document} some id="M3">\begin{document}$ a, b \in \mathbb{R}, < id="M4">\begin{document}$ s (0, 1) and id="M5">\begin{document}$ p [1, \infty] $\end{document}; that is, of functions id="M6">\begin{document}$ u L^{p}(I) such left id="M7">\begin{document}$ (1 - s) $\end{document}-fractional integral id="M8">\begin{document}$ I_{a+}^{1 s}[u] belongs to id="M9">\begin{document}$ W^{1, p}(I) $\end{document}. We prove bounded variation id="M10">\begin{document}$ BV(I) id="M11">\begin{document}$ 1}(I) continuously embed into id="M12">\begin{document}$ 1}_{RL, In addition, define with id="M13">\begin{document}$ variation, id="M14">\begin{document}$ BV^{s}_{RL,a+}(I) as set id="M15">\begin{document}$ L^{1}(I) id="M16">\begin{document}$ I^{1 s}_{a+}[u] analyze fine properties these functions. Finally, Sobolev-type embedding results case higher order derivatives.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Diffusion based on Riemann-Liouville Fractional Derivatives

A fractional diffusion equation based on Riemann-Liouville fractional derivatives is solved exactly. The initial values are given as fractional integrals. The solution is obtained in terms of H-functions. It differs from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional diffusion based on a Riemann-Liouville fractional time derivative...

متن کامل

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

Fractional Ince equation with a Riemann-Liouville fractional derivative

We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...

متن کامل

Fractional Problems with Right-handed Riemann-liouville Fractional Derivatives

Abstract: In this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monot...

متن کامل

Composition in Fractional Sobolev Spaces

1. Introduction. A classical result about composition in Sobolev spaces asserts that if u ∈ W k,p (Ω)∩L ∞ (Ω) and Φ ∈ C k (R), then Φ • u ∈ W k,p (Ω). Here Ω denotes a smooth bounded domain in R N , k ≥ 1 is an integer and 1 ≤ p < ∞. This result was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In particular if u ∈ W k,p (Ω) with kp > N and Φ ∈ C k (R) then Φ • ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2021

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2020255